霍尔效应实验思想总结(热门十三篇)
● 霍尔效应实验思想总结 ●
1980年,德国科学家冯?克利青发现整数量子霍尔效应,1982年,美国科学家崔琦和施特默发现分数量子霍尔效应,这两项成果均获得诺贝尔物理学奖。
量子霍尔效应是整个凝聚态物理领域中最重要、最基本的量子效应之一。它的应用前景非常广泛。我们使用计算机的时候,会遇到计算机发热、能量损耗、速度变慢等问题。这是因为常态下的芯片中,电子运动没有特定的轨道,会相互碰撞从而发生能量损耗。而量子霍尔效应则可以为电子的运动制定一定的规则,让它们在各自的跑道上“一往无前”地前进。好比一辆高级跑车,常态下是在拥挤的农贸市场上前进,而在量子霍尔效应下,则可以在高速路上前进。
然而,量子霍尔效应的产生需要非常强的磁场。为了一台计算机的量子霍尔效应,相当于需外加10个计算机大的磁铁,不但体积庞大,而且价格昂贵,不适合个人电脑和便携式计算机。
1988年,美国物理学家霍尔丹提出可能存在不需要外磁场的量子霍尔效应,即“量子反常霍尔效应”。它与已知的量子霍尔效应具有完全不同的物理本质,是一种全新的量子效应;但它的实现也更加困难,需要精准的材料设计、制备与调控。多年来,人们一直未能找到能实现这一特殊量子效应的材料体系和具体物理途径。自1988年开始,就不断有理论物理学家提出各种方案,然而在实验上没有取得任何进展。
,美国斯坦福大学张首晟教授领导的理论组成功地预言了二维拓扑绝缘体中的量子自旋霍尔效应,并于指出了在磁性掺杂的拓扑绝缘体中实现量子反常霍尔效应的新方向。,我国理论物理学家方忠、戴希等与张首晟教授合作,提出磁性掺杂的三维拓扑绝缘体有可能是实现量子化反常霍尔效应的最佳体系。这个方案引起了国际学术界的广泛关注。德国、美国、日本等国有多个世界一流的研究团队沿着这个思路在实验上寻找量子反常霍尔效应,但一直没有取得突破。
由清华大学薛其坤院士领衔,清华大学、中科院物理所和斯坦福大学研究人员联合组成的团队,经过近4年的研究,生长测量了1000多个样品。最终,他们利用分子束外延方法,生长出了高质量的Cr掺杂(Bi,Sb) 2Te3拓扑绝缘体磁性薄膜,并在极低温输运测量装置上成功观测到了量子反常霍尔效应。这项研究成果将推动新一代低能耗晶体管和电子学器件的发展,可能加速推进信息技术革命进程。
3月14日,该成果发表于美国《科学》杂志。《科学》杂志的评审作出评价:“这篇文章结束了对量子反常霍尔效应多年的探寻,这是一项里程碑式的工作。”诺贝尔物理奖得主、清华大学高等研究院名誉院长杨振宁教授说,这是“诺贝尔奖级的发现”。
5.关于“量子霍尔效应”与“量子反常霍尔效应”的区别,以下表述小正确的一项是:
A.前者是整个凝聚态物理领域中最重要、最基本的量子效应之一;后者具有与前者完全不同的物理本质,是一种全新的量子效应。
B.前者应用前景广泛;后者则属于特殊情况下的量子效应,应用前景限于低能耗晶体管和电子学器件方面。
C.前者的产牛需要非常强的磁场,应用时难免器件体积过大、成本过高;后者的产生不需要外磁场,应用时,能使得器件的体积小不至于过大。
D.前者于1980年被发现,后者于20被证实;后者的实现比前者的实现更难能可贵,需要精准的材料设计、制备与调控。
A.量子霍尔效应可以使电子的运动由无序变成有序,使得电子在各自特定的轨道上运动,在很大程度上.避免电子相互碰撞,避免其能量的无谓损耗。
B.要在试验层面证实量子反常霍尔效应,对科学家而育足十分严峻的挑战,既需要有很特殊的材料体系,也需要有很特殊的物理途径。
C.薛其坤领衔的团队利用分子束外延方法,生长出了高质量的Cr掺杂(Bi,Sb) 2Te3拓扑绝缘体磁性薄膜,在这一材料中,就存在着量子反常霍尔效应。
D.曾有科学家提出,磁性掺杂的三维拓扑绝缘体有可能是实现量子反常霍尔效应的最佳体系,但经德、美、日等多国科学家的实践证明,这条思路行不通。
7.根据原文内容,下列推断正确的一项是:
A.常态下的芯片中,电子运动没有特定轨道,会相互碰撞,因而计算机会出现发热、能量损耗、速度变慢等问题。量子霍尔效应的具体应用,才能解决这些问题。 (不是唯一条件)
B.由于量子霍尔效应的产生需要非常强的磁场,所以到目前为止,它并未获得实际应用;也正是因为这个原因,对量子反常霍尔效应的'研究才显得十分必要。 (因果推断不成立)
C.薛其坤领衔的研究团队之所以能率先证实量子反常霍尔效应,是因为他们不仅吸纳了其他科学家的研究成果,掌握了正确的研究途径,而且在方法上有自己的创新。
D.鉴于发现整数量子霍尔效应的德国科学家和发现分数量了霍尔效应的芙国科学家均获得诺贝尔物理学奖,我们可以断言薛其坤院士领衔的团队将获得诺贝尔物理学奖。 (绝对化)
试题答案:
5.答案:5.B(从原文所阐述的科学原理看,“量子反常霍尔效应”与“量子霍尔效应” 的应用前景没有什么区别,都能促进低能耗晶体管和电子学器件的发展,都能解决计算机能量损耗、发热、速度变慢等问题。)
6.答案:6.D(“这条思路行不通”误解文意。据原文意,方忠、戴希、张首晟等人提出的“磁性掺杂的三维拓扑绝缘体有可能是实现量子化反常霍尔效应的最佳体系”的设想,是后来薛其坤团队证实“量子反常霍尔效应”的指路明灯。虽先前德、美、日等国科学家在此思路上未取得突破,但不能据此认为“这条思路行不通”。)
答案:7.C(A“量子霍尔效应的具体应用,才能解决(计算机发热、能量损耗、速度变慢等)这些问题”太绝对,据原文意,“量子反常霍尔效应”的具体应用,也能解决这些问题。B 前句“由于量子霍尔效应的产生需要非常强的磁场,所以……它并未获得实际应用”强加因果,也于文无据;后句说,因为量子霍尔效应未能获得实际应用,所以有必要研究量子反常霍尔效应,这也是强加因果,不合原文意思。从原文看,研究量子反常霍尔效应之所以必要,是因为量子霍尔效应的应用存在着器件体积过大、成本过高的问题。D“……断言薛其坤院士领衔的团队将获得诺贝尔物理学奖”太唐突。“断言”意谓“十分肯定地说”,依原文,薛其坤团队很有可能获得诺贝尔物理学奖,但并没有说十分肯定)
● 霍尔效应实验思想总结 ●
霍尔实验报告 篇1<\/h2>
《量子霍尔效应》的阅读题及答案
1980年,德国科学家冯?克利青发现整数量子霍尔效应,1982年,美国科学家崔琦和施特默发现分数量子霍尔效应,这两项成果均获得诺贝尔物理学奖。
量子霍尔效应是整个凝聚态物理领域中最重要、最基本的量子效应之一。它的应用前景非常广泛。我们使用计算机的时候,会遇到计算机发热、能量损耗、速度变慢等问题。这是因为常态下的芯片中,电子运动没有特定的轨道,会相互碰撞从而发生能量损耗。而量子霍尔效应则可以为电子的运动制定一定的规则,让它们在各自的跑道上“一往无前”地前进。好比一辆高级跑车,常态下是在拥挤的农贸市场上前进,而在量子霍尔效应下,则可以在高速路上前进。
然而,量子霍尔效应的产生需要非常强的磁场。为了一台计算机的量子霍尔效应,相当于需外加10个计算机大的磁铁,不但体积庞大,而且价格昂贵,不适合个人电脑和便携式计算机。
1988年,美国物理学家霍尔丹提出可能存在不需要外磁场的量子霍尔效应,即“量子反常霍尔效应”。它与已知的量子霍尔效应具有完全不同的物理本质,是一种全新的量子效应;但它的实现也更加困难,需要精准的材料设计、制备与调控。多年来,人们一直未能找到能实现这一特殊量子效应的材料体系和具体物理途径。自1988年开始,就不断有理论物理学家提出各种方案,然而在实验上没有取得任何进展。
,美国斯坦福大学张首晟教授领导的理论组成功地预言了二维拓扑绝缘体中的量子自旋霍尔效应,并于指出了在磁性掺杂的拓扑绝缘体中实现量子反常霍尔效应的新方向。,我国理论物理学家方忠、戴希等与张首晟教授合作,提出磁性掺杂的三维拓扑绝缘体有可能是实现量子化反常霍尔效应的最佳体系。这个方案引起了国际学术界的广泛关注。德国、美国、日本等国有多个世界一流的研究团队沿着这个思路在实验上寻找量子反常霍尔效应,但一直没有取得突破。
由清华大学薛其坤院士领衔,清华大学、中科院物理所和斯坦福大学研究人员联合组成的团队,经过近4年的研究,生长测量了1000多个样品。最终,他们利用分子束外延方法,生长出了高质量的Cr掺杂(Bi,Sb) 2Te3拓扑绝缘体磁性薄膜,并在极低温输运测量装置上成功观测到了量子反常霍尔效应。这项研究成果将推动新一代低能耗晶体管和电子学器件的发展,可能加速推进信息技术革命进程。
3月14日,该成果发表于美国《科学》杂志。《科学》杂志的评审作出评价:“这篇文章结束了对量子反常霍尔效应多年的探寻,这是一项里程碑式的工作。”诺贝尔物理奖得主、清华大学高等研究院名誉院长^宁教授说,这是“诺贝尔奖级的发现”。
5.关于“量子霍尔效应”与“量子反常霍尔效应”的区别,以下表述小正确的一项是:
A.前者是整个凝聚态物理领域中最重要、最基本的量子效应之一;后者具有与前者完全不同的物理本质,是一种全新的量子效应。
B.前者应用前景广泛;后者则属于特殊情况下的量子效应,应用前景限于低能耗晶体管和电子学器件方面。
C.前者的产牛需要非常强的磁场,应用时难免器件体积过大、成本过高;后者的产生不需要外磁场,应用时,能使得器件的体积小不至于过大。
D.前者于1980年被发现,后者于20被证实;后者的实现比前者的实现更难能可贵,需要精准的材料设计、制备与调控。
6.下列理解,不符合原文意思的一项是
A.量子霍尔效应可以使电子的运动由无序变成有序,使得电子在各自特定的轨道上运动,在很大程度上.避免电子相互碰撞,避免其能量的无谓损耗。
B.要在试验层面证实量子反常霍尔效应,对科学家而育足十分严峻的挑战,既需要有很特殊的材料体系,也需要有很特殊的物理途径。
C.薛其坤领衔的团队利用分子束外延方法,生长出了高质量的Cr掺杂(Bi,Sb) 2Te3拓扑绝缘体磁性薄膜,在这一材料中,就存在着量子反常霍尔效应。
D.曾有科学家提出,磁性掺杂的三维拓扑绝缘体有可能是实现量子反常霍尔效应的最佳体系,但经德、美、日等多国科学家的实践证明,这条思路行不通。
7.根据原文内容,下列推断正确的一项是:
A.常态下的芯片中,电子运动没有特定轨道,会相互碰撞,因而计算机会出现发热、能量损耗、速度变慢等问题。量子霍尔效应的具体应用,才能解决这些问题。 (不是唯一条件)
B.由于量子霍尔效应的产生需要非常强的磁场,所以到目前为止,它并未获得实际应用;也正是因为这个原因,对量子反常霍尔效应的'研究才显得十分必要。 (因果推断不成立)
C.薛其坤领衔的研究团队之所以能率先证实量子反常霍尔效应,是因为他们不仅吸纳了其他科学家的研究成果,掌握了正确的研究途径,而且在方法上有自己的创新。
D.鉴于发现整数量子霍尔效应的德国科学家和发现分数量了霍尔效应的芙国科学家均获得诺贝尔物理学奖,我们可以断言薛其坤院士领衔的团队将获得诺贝尔物理学奖。 (绝对化)
试题答案:
5.答案:(从原文所阐述的科学原理看,“量子反常霍尔效应”与“量子霍尔效应” 的应用前景没有什么区别,都能促进低能耗晶体管和电子学器件的发展,都能解决计算机能量损耗、发热、速度变慢等问题。)
6.答案:(“这条思路行不通”误解文意。据原文意,方忠、戴希、张首晟等人提出的“磁性掺杂的三维拓扑绝缘体有可能是实现量子化反常霍尔效应的最佳体系”的设想,是后来薛其坤团队证实“量子反常霍尔效应”的指路明灯。虽先前德、美、日等国科学家在此思路上未取得突破,但不能据此认为“这条思路行不通”。)
答案:(A“量子霍尔效应的具体应用,才能解决(计算机发热、能量损耗、速度变慢等)这些问题”太绝对,据原文意,“量子反常霍尔效应”的具体应用,也能解决这些问题。B 前句“由于量子霍尔效应的产生需要非常强的磁场,所以……它并未获得实际应用”强加因果,也于文无据;后句说,因为量子霍尔效应未能获得实际应用,所以有必要研究量子反常霍尔效应,这也是强加因果,不合原文意思。从原文看,研究量子反常霍尔效应之所以必要,是因为量子霍尔效应的应用存在着器件体积过大、成本过高的问题。D“……断言薛其坤院士领衔的团队将获得诺贝尔物理学奖”太唐突。“断言”意谓“十分肯定地说”,依原文,薛其坤团队很有可能获得诺贝尔物理学奖,但并没有说十分肯定)
霍尔实验报告 篇2<\/h2>
半导体中自旋轨道耦合及自旋霍尔效应
本文主要评述和介绍半导体微结构中自旋轨道耦合的研究和最近的研究进展.我们细致地讨论了半导体微结构中自旋轨道耦合的物理起源和窄带隙半导体量子阱中的自旋霍尔效应.我们发现目前国际上广泛采用的线性Rashba模型在较大的电子平面波矢处失效:即自旋轨道耦合导致的能带自旋劈裂不再随电子波矢的增加而增加,而是开始下降,即出现强烈的非线性行为.这种非线性的行为起源于导带和价带间耦合的减弱.这种非线性行为还会导致电子的D'yakonov-Perel'自旋弛豫速率在较高能量处下降,与线性模型的结果完全相反.在此基础上,我们构造统一描述电子和空穴自旋霍尔效应的.理论框架.我们的方法可以非微扰地计入自旋轨道耦合对本征自旋霍尔效应的影响.我们将此方法应用于强自旋轨道耦合的情形,即窄带隙CdHgTe/CdTe半导体量子阱.我们发现调节外电场或量子阱的阱宽可以作为导致量子相变和本征自旋霍尔效应的开关.我们的工作可能会为区别和实验验证本征自旋霍尔效应提供物理基础.
霍尔实验报告 篇3<\/h2>
霍尔传感器测速
引 言
随着单片机的不断推陈出新,特别是高性价比的单片机的涌现,转速测量控制普遍采用了以单片机为核心的数字化、智能化的系统。本文介绍了一种由单片机C8051F060作为主控制器,使用霍尔传感器进行测量的直流电机转速测量系统。
1 转速测量及控制的基本原理
转速测量原理
转速的测量方法很多,根据脉冲计数来实现转速测量的方法主要有M法(测频法)、T法(测周期法)和MPT法(频率周期法),该系统采用了M法(测频法)。由于转速是以单位时间内转数来衡量,在变换过程中多数是有规律的重复运动。根据霍尔效应原理,将一块永久磁钢固定在电机转轴上的转盘边沿,转盘随测轴旋转,磁钢也将跟着同步旋转,在转盘下方安装一个霍尔器件,转盘随轴旋转时,受磁钢所产生的磁场的影响,霍尔器件输出脉冲信号,其频率和转速成正比。脉冲信号的周期与电机的转速有以下关系:
式中:n为电机转速;P为电机转一圈的脉冲数;T为输出方波信号周期
根据式(1)即可计算出直流电机的转速。
霍尔器件是由半导体材料制成的一种薄片,在垂直于平面方向上施加外磁场B,在沿平面方向两端加外电场,则使电子在磁场中运动,结果在器件的2个侧面之间产生霍尔电势。其大小和外磁场及电流大小成比例。霍尔开关传感器由于其体积小、无触点、动态特性好、使用寿命长等特点,故在测量转动物体旋转速度领域得到了广泛应用。在这里选用美国史普拉格公司(SPRAGUE)生产的3000系列霍尔开关传感器3013,它是一种硅单片集成电路,器件的内部含有稳压电路、霍尔电势发生器、放大器、史密特触发器
和集电极开路输出电路,具有工作电压范围宽、可靠性高、外电路简单
转速控制原理
直流电机的转速与施加于电机两端的电压大小有关,可以采用C8051F060片内的D/A转换器DAC0的输出控制直流电机的电压从而控制电机的转速。在这里采用简单的比例调节器算法(简单的加一、减一法)。比例调节器的输出系统式为:
式中:Y为调节器的输出;e(t)为调节器的输人,一般为偏差值;Kp为比例系数。
从式(2)可以看出,调节器的输出Y与输入偏差值e(t)成正比。因此,只要偏差e(t)一出现就产生与之成比例的调节作用,具有调节及时的特点,这是一种最基本的调节规律。比例调节作用的大小除了与偏差e(t)有关外,主要取决于比例系数Kp,比例调节系数愈大,调节作用越强,动态特性也越大。反之,比例系数越小,调节作用越弱。对于大多数的惯性环节,Kp太大时将会引起自激振荡。比例调节的主要缺点是存在静差,对于扰动的'惯性环节,Kp太大时将会引起自激振荡。对于扰动较大,惯性也比较大的系统,若采用单纯的比例调节器就难于兼顾动态和静态特性,需采用调节规律比较复杂的PI(比例积分调节器)或PID(比例、积分、微分调节器)算法。
2 系统的硬件软件设计
硬件设计
本系统采用单片机C8051F060作为主控制器,使用霍尔传感器测量电机的转速,通过7079最终在LED上显示测试结果。此外,还可以根据需要调整控制电机的转速,硬件组成由图1所示。
控制器C8051F060主要完成转速脉冲的采集、16为定时计数器计数定时、运算比较,片内集成的12位DAC0控制转速,并且通过7279显示接口芯片实现数码显示等多项功能。
系统采用外部晶振,系统时钟SYSCLK等于1843,T0定时1 ms,初始化时TH0=(-SYSCLK/1 000)》8;TL0=-SYSCLK/1 000。等待1 s到,输出转速脉冲个数N,计算电机转速值。将1 s内的转速值换算成1 min内的电机转速值,并在LED上输出测量结果。
软件设计
本系统采用C8051F060中的INT0中断对转速脉冲计数。定时器T1工作于外部事件计数方式对转速脉冲计数;T0工作于定时器方式均工作于方式1。每到1 s读一次计数值,此值即为脉冲信号的频率,根据式(1)可计算出电机的转速。由于直流电机的转速与施加工于电机两端的电压大小有关,故将实际测得的转速值与预设的转速值比较,若大于预设的转速值则减小DAC0的数值,若小于转速预设的转速值则增加DAC0的值调整电机的转速,直到转速值等于预设定的值,这样就实现了对电机转速的控制,主程序和T0中断流程图如图2、3所示。
霍尔实验报告 篇4<\/h2>
一、实验名称: 霍尔效应原理及其应用
二、实验目的:
1、了解霍尔效应产生原理;
2、测量霍尔元件的 、 曲线,了解霍尔电压 与霍尔元件工作电流 、直螺线管的励磁电流 间的关系;
3、学习用霍尔元件测量磁感应强度的原理和方法,测量长直螺旋管轴向磁感应强度 及分布;
4、学习用对称交换测量法(异号法)消除负效应产生的系统误差。
三、仪器用具:YX-04型霍尔效应实验仪(仪器资产编号)
四、实验原理:
1、霍尔效应现象及物理解释
霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力 作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直于电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。对于图1所示。
半导体样品,若在x方向通以电流 ,在z方向加磁场 ,则在y方向即样品A、A′电极两侧就开始聚积异号电荷而产生相应的电场 ,电场的指向取决于样品的导电类型。显然,当载流子所受的横向电场力 时电荷不断聚积,电场不断加强,直到 样品两侧电荷的积累就达到平衡,即样品A、A′间形成了稳定的电势差(霍尔电压) 。
设 为霍尔电场, 是载流子在电流方向上的平均漂移速度;样品的宽度为 ,厚度为 ,载流子浓度为 ,则有:
(1-1)
因为 , ,又根据 ,则
(1-2)
其中 称为霍尔系数,是反映材料霍尔效应强弱的重要参数。只要测出 、 以及知道 和 ,可按下式计算 :
(1-3)
(1-4)
为霍尔元件灵敏度。根据RH可进一步确定以下参数。
(1)由 的符号(霍尔电压的正负)判断样品的导电类型。判别的方法是按图1所示的 和 的方向(即测量中的+ ,+ ),若测得的 <0(即A′的电位低于A的电位),则样品属N型,反之为P型。
(2)由 求载流子浓度 ,即 。应该指出,这个关系式是假定所有载流子都具有相同的漂移速度得到的。严格一点,考虑载流子的速度统计分布,需引入 的修正因子(可参阅黄昆、谢希德著《半导体物理学》)。
(3)结合电导率的测量,求载流子的迁移率 。电导率 与载流子浓度 以及迁移率 之间有如下关系:
(1-5)
2、霍尔效应中的副效应及其消除方法
上述推导是从理想情况出发的,实际情况要复杂得多。产生上述霍尔效应的同时还伴随产生四种副效应,使 的测量产生系统误差,如图2所示。
(1)厄廷好森效应引起的电势差 。由于电子实际上并非以同一速度v沿y轴负向运动,速度大的电子回转半径大,能较快地到达接点3的侧面,从而导致3侧面较4侧面集中较多能量高的电子,结果3、4侧面出现温差,产生温差电动势 。可以证明 。 的正负与 和 的方向有关。
(2)能斯特效应引起的电势差 。焊点1、2间接触电阻可能不同,通电发热程度不同,故1、2两点间温度可能不同,于是引起热扩散电流。与霍尔效应类似,该热扩散电流也会在3、4点间形成电势差 。若只考虑接触电阻的'差异,则 的方向仅与磁场 的方向有关。
(3)里纪-勒杜克效应产生的电势差 。上述热扩散电流的载流子由于速度不同,根据厄廷好森效应同样的理由,又会在3、4点间形成温差电动势 。 的正负仅与 的方向有关,而与 的方向无关。
(4)不等电势效应引起的电势差 。由于制造上的困难及材料的不均匀性,3、4两点实际上不可能在同一等势面上,只要有电流沿x方向流过,即使没有磁场 ,3、4两点间也会出现电势差 。 的正负只与电流 的方向有关,而与 的方向无关。
综上所述,在确定的磁场 和电流 下,实际测出的电压是霍尔效应电压与副效应产生的附加电压的代数和。可以通过对称测量方法,即改变 和磁场 的方向加以消除和减小副效应的影响。在规定了电流 和磁场 正、反方向后,可以测量出由下列四组不同方向的 和 组合的电压。即:
, :
, :
, :
, :
然后求 , , , 的代数平均值得:
通过上述测量方法,虽然不能消除所有的副效应,但 较小,引入的误差不大,可以忽略不计,因此霍尔效应电压 可近似为
(1-6)
3、直螺线管中的磁场分布
1、以上分析可知,将通电的霍尔元件放置在磁场中,已知霍尔元件灵敏度 ,测量出 和 ,就可以计算出所处磁场的磁感应强度 。
(1-7)
2、直螺旋管离中点 处的轴向磁感应强度理论公式:
(1-8)
式中, 是磁介质的磁导率, 为螺旋管的匝数, 为通过螺旋管的电流, 为螺旋管的长度, 是螺旋管的内径, 为离螺旋管中点的距离。
X=0时,螺旋管中点的磁感应强度
(1-9)
霍尔实验报告 篇5<\/h2>
一、实验名称: 霍尔效应原理及其应用
二、实验目的:
1、了解霍尔效应产生原理;
2、测量霍尔元件的 、 曲线,了解霍尔电压 与霍尔元件工作电流 、直螺线管的励磁电流 间的关系;
3、学习用霍尔元件测量磁感应强度的原理和方法,测量长直螺旋管轴向磁感应强度 及分布;
4、学习用对称交换测量法(异号法)消除负效应产生的系统误差。
三、仪器用具:YX-04型霍尔效应实验仪(仪器资产编号)
四、实验原理:
1、霍尔效应现象及物理解释
霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力 作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直于电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。对于图1所示。
半导体样品,若在x方向通以电流 ,在z方向加磁场 ,则在y方向即样品A、A′电极两侧就开始聚积异号电荷而产生相应的电场 ,电场的指向取决于样品的导电类型。显然,当载流子所受的横向电场力 时电荷不断聚积,电场不断加强,直到 样品两侧电荷的积累就达到平衡,即样品A、A′间形成了稳定的电势差(霍尔电压) 。
设 为霍尔电场, 是载流子在电流方向上的平均漂移速度;样品的宽度为 ,厚度为 ,载流子浓度为 ,则有:
(1-1)
因为 , ,又根据 ,则
(1-2)
其中 称为霍尔系数,是反映材料霍尔效应强弱的重要参数。只要测出 、 以及知道 和 ,可按下式计算 :
(1-3)
(1-4)
为霍尔元件灵敏度。根据RH可进一步确定以下参数。
(1)由 的符号(霍尔电压的正负)判断样品的导电类型。判别的方法是按图1所示的 和 的方向(即测量中的+ ,+ ),若测得的 <0(即A′的电位低于A的电位),则样品属N型,反之为P型。
(2)由 求载流子浓度 ,即 。应该指出,这个关系式是假定所有载流子都具有相同的漂移速度得到的。严格一点,考虑载流子的速度统计分布,需引入 的修正因子(可参阅黄昆、谢希德著《半导体物理学》)。
(3)结合电导率的测量,求载流子的迁移率 。电导率 与载流子浓度 以及迁移率 之间有如下关系:
(1-5)
2、霍尔效应中的副效应及其消除方法
上述推导是从理想情况出发的,实际情况要复杂得多。产生上述霍尔效应的同时还伴随产生四种副效应,使 的测量产生系统误差,如图2所示。
(1)厄廷好森效应引起的电势差 。由于电子实际上并非以同一速度v沿y轴负向运动,速度大的电子回转半径大,能较快地到达接点3的侧面,从而导致3侧面较4侧面集中较多能量高的电子,结果3、4侧面出现温差,产生温差电动势 。可以证明 。 的正负与 和 的方向有关。
(2)能斯特效应引起的电势差 。焊点1、2间接触电阻可能不同,通电发热程度不同,故1、2两点间温度可能不同,于是引起热扩散电流。与霍尔效应类似,该热扩散电流也会在3、4点间形成电势差 。若只考虑接触电阻的差异,则 的方向仅与磁场 的方向有关。
(3)里纪-勒杜克效应产生的电势差 。上述热扩散电流的载流子由于速度不同,根据厄廷好森效应同样的理由,又会在3、4点间形成温差电动势 。 的正负仅与 的方向有关,而与 的方向无关。
(4)不等电势效应引起的电势差 。由于制造上的困难及材料的不均匀性,3、4两点实际上不可能在同一等势面上,只要有电流沿x方向流过,即使没有磁场 ,3、4两点间也会出现电势差 。 的正负只与电流 的方向有关,而与 的方向无关。
综上所述,在确定的磁场 和电流 下,实际测出的电压是霍尔效应电压与副效应产生的附加电压的代数和。可以通过对称测量方法,即改变 和磁场 的方向加以消除和减小副效应的影响。在规定了电流 和磁场 正、反方向后,可以测量出由下列四组不同方向的 和 组合的电压。即:
, :
, :
, :
, :
然后求 , , , 的代数平均值得:
通过上述测量方法,虽然不能消除所有的副效应,但 较小,引入的误差不大,可以忽略不计,因此霍尔效应电压 可近似为
(1-6)
3、直螺线管中的磁场分布
1、以上分析可知,将通电的霍尔元件放置在磁场中,已知霍尔元件灵敏度 ,测量出 和 ,就可以计算出所处磁场的磁感应强度 。
(1-7)
2、直螺旋管离中点 处的轴向磁感应强度理论公式:
(1-8)
式中, 是磁介质的磁导率, 为螺旋管的匝数, 为通过螺旋管的电流, 为螺旋管的长度, 是螺旋管的内径, 为离螺旋管中点的距离。
X=0时,螺旋管中点的磁感应强度
(1-9)
五、 实验内容:
测量霍尔元件的 、 关系;
1、将测试仪的“ 调节”和“ 调节”旋钮均置零位(即逆时针旋到底),极性开关选择置“0”。
2、接通电源,电流表显示“”。有时, 调节电位器或 调节电位器起点不为零,将出现电流表指示末位数不为零,亦属正常。电压表显示“”。
3、测定 关系。取 =900mA,保持不变;霍尔元件置于螺旋管中点(二维移动尺水平方向处与读数零点对齐)。顺时针转动“ 调节”旋钮, 依次取值为,,…,,将 和 极性开关选择置“+” 和“-”改变 与 的极性,记录相应的电压表读数 值,填入数据记录表1。
4、以 为横坐标, 为纵坐标作 图,并对 曲线作定性讨论。
5、测定 关系。取 =10 mA ,保持不变;霍尔元件置于螺旋管中点(二维移动尺水平方向处与读数零点对齐)。顺时针转动“ 调节”旋钮, 依次取值为0,100,200,…,900 mA,将 和 极性开关择置“+” 和“-”改变 与 的极性,记录相应的电压表读数 值,填入数据记录表2。
6、以 为横坐标, 为纵坐标作 图,并对 曲线作定性讨论。
测量长直螺旋管轴向磁感应强度
1、取 =10 mA, =900mA。
2、移动水平调节螺钉,使霍尔元件在直螺线管中的位置 (水平移动游标尺上读出),先从开始,最后到0cm点。改变 和 极性,记录相应的电压表读数 值,填入数据记录表3,计算出直螺旋管轴向对应位置的磁感应强度 。
3、以 为横坐标, 为纵坐标作 图,并对 曲线作定性讨论。
4、用公式(1-8)计算长直螺旋管中心的磁感应强度的理论值,并与长直螺旋管中心磁感应强度的测量值 比较,用百分误差的形式表示测量结果。式中 ,其余参数详见仪器铭牌所示。
六、 注意事项:
1、为了消除副效应的影响,实验中采用对称测量法,即改变 和 的方向。
2、霍尔元件的工作电流引线与霍尔电压引线不能搞错;霍尔元件的工作电流和螺线管的励磁电流要分清,否则会烧坏霍尔元件。
3、实验间隙要断开螺线管的励磁电流 与霍尔元件的工作电流 ,即 和 的极性开关置0位。
4、霍耳元件及二维移动尺容易折断、变形,要注意保护,应注意避免挤压、碰撞等,不要用手触摸霍尔元件。
七、 数据记录:KH=,N=3150匝,L=280mm,r=13mm
表1 关系 ( =900mA)
(mV) (mV) (mV) (mV)
表2 关系 ( =)
(mV) (mV) (mV) (mV)
0
100
200
300
400
500
600
700
800
900
表3 关系 =, =900mA
(mV) (mV) (mV) (mV) B ×10-3T
0
八、 数据处理:(作图用坐标纸)
九、 实验结果:
实验表明:霍尔电压 与霍尔元件工作电流 、直螺线管的励磁电流 间成线性的关系。
长直螺旋管轴向磁感应强度:
B=UH/KH*IS=
理论值比较误差为: E=
● 霍尔效应实验思想总结 ●
普通的爱情故事
观获奥斯卡金像奖电影之《安妮.。霍尔》有感
在一次无意的“经典爱情影片“中,让我结实了一部感人至深的爱情影片——《安妮.霍尔》。一开始,是抱着一种无聊时随便满足的心情来看的,根本不在意这部**的来龙去脉,更不会去了解它的获奖背景,是否有名气。
于是,我怀着一颗平常心
影片中:独自住在纽约,个子矮小,戴着一副高度近视镜,不修边幅,略显邋遢的艾尔维·辛格虽然艾尔维是一个犹太青年·虽然他其貌不扬,但他却拥有一口绝佳的口才,经常出演单口相声,自己一个人过着悠哉悠哉的单身生活。同时,他也是一个被死亡困扰的搞笑角色,试图与一个热爱生活、有个性的紧张但充满活力的舞台演员合作。
看到这里时,我开始猜测这个男主角的爱情故事是不是经历了很多风风雨雨,才让这个如此有才艺的男人显得如此沧桑。接下来他是不是讲过的很凄惨?
当埃尔维的生活非常沮丧时,他开始变得暴躁和焦虑。但有一次,阿尔维和他的朋友罗勃在打网球时遇到了漂亮的女孩安妮·霍尔。她这是一位衣着时尚,口齿伶俐的女孩,梦想是有一天能够成为有名气的歌星。
在第一次见面时,阿尔维被安妮的魅力迷住了,深深地爱上了她。
看到这里,我的心又开始游荡。这样一个郁郁寡欢的老人,用这个美丽动人的小美人,一定没有什么好结果。但是事再次击败了我的直觉:
虽然安妮的父母不喜欢紧张的阿尔维,但安妮霍尔仍然对这位天才男子着迷。陷入甜美爱情的他们还是过起了同居生活,他们在一起的时间爱得十分狂热。我们都默默无闻地为对方付出代价。
但是风流有趣的埃尔维总是在他们的爱情过程中,偶尔出现几次出轨,
此时,我已无法控制自己的情绪了,我在心底暗暗地怒骂着这个十分花心但又长相平凡的男主角,认为安妮就像一朵鲜花插在牛粪上。但下一幕改变了我对他的看法:
安妮开始学起声乐,经常在酒吧里卖唱自己的声音,但是没有**经验的她却不怎么得人喜欢,于是她开始进步飞快。安妮慢慢地自怨自艾,有点自卑。但在艾维真诚、耐心、细致的鼓励下,安妮进步越来越快,唱歌越来越好,开始在城里赚钱。
于是,我又开始遐想:有表演天赋的埃尔维通过自己不解的努力改变了一个女孩的兴趣和爱好,让安妮变得更具自信、更具才气,他们一定会白头偕老、幸福一生。可是,事实又证明我犯错了:
一天,在酒吧的演唱中,安妮动情的演唱引起了著名歌星托尼·莱西的注意,倾慕于安妮美貌的托尼想让安妮到福尼亚州去唱歌。但埃尔维似乎不喜欢。托尼多次邀请后,终于同意见安妮。安妮参观了托尼的公司并了解了有关情况后,开始爱上福吉尼亚和托尼的公司。
在返回纽约的途中,他们居然不约而同的提出了分手。
我不想再猜他们的结果了,因为我以前已经猜过几次了。但我想知道,为什么看似良好的发展趋势会变成这样?难道就像歌词唱的“相爱真的不是那么容易”那样?
安妮到了福尼亚州以后,在托尼的器重和资助下,演艺道路发展得很不错。而重受挫伤的埃尔维还现在爱河中难以自拔,看懂安妮和托尼日渐暧昧的关系,他陷入了无边的痛苦之中。其实,他还是爱着安妮的。
于是,他特意赶去福尼亚州找安妮,希望能够挽回这段迷失的爱情,他向她提出了结婚的想法,但被安妮一口拒绝了。最后,埃尔维斯绝望地去了加里福尼亚
las,几经周折,曾经美丽的爱情被埋在不和谐的encounter中。只是,我最不能理解的是,为何从故事的开头到结尾,我一直未能猜中故事的情节呢,这或许是东西方人的思维差异,或是编剧故意巧设的悬念吧,还是这部影片的剧情实在是太棒了。
我怀着轻松、快乐和好奇的心情去看电影。没有惊悚之处,没有特技效果,没有激斗场面,也没有太多刻意的情节,而就是这样普通而不简单、平淡而有波折的故事情节,让我仿佛陷入了一场爱情漩涡,让我在其中聆听爱情的呼唤,感受爱情的力量,学习爱情的经验。
总之,这个平凡的爱情故事让我看到了人性的光辉和污点,爱情的魅力和丑陋。
● 霍尔效应实验思想总结 ●
二、实验目的:1.学会用实验的方法测出小车在斜坡各段的平均速度,
验证小车在斜坡滑下是前半程快还是后半程快。2巩固刻度尺和秒表的使用。
六、实验步骤:
1.将木块的一端用木块垫起,使它保持很小的坡度。
2.将小车放在斜面顶端,金属片放在斜面底端,用刻度尺测出小车通过的路程s1,用停表测量通过这段路程所用的时间t1。
3.根据测得的s1、t1,利用公式v1=s1/t1算出小车通过斜面全程的平均速度v1。
4.将金属片移至斜面中部,重复上述过程,进行第二次测量。
5.利用s1—s2=s3,t1—t2=t3,求出v3。
6.收集数据的表格:
路程S1=S2=S3=S1-S2=运动时间 平均速度t1=t2=t3=t1-t2=V1=V2=V3=
● 霍尔效应实验思想总结 ●
1.甲烷
(1)甲烷通入KMnO4酸性溶液中
实验:把甲烷通入盛有KMnO4酸性溶液的试管里,观察紫色溶液是否有变化?
现象与解释:溶液颜色没有变化。说明甲烷与KMnO4酸性溶液不反应,进一步说明甲烷的性质比较稳定。
(2)甲烷的取代反应
实验:取一个100mL的大量筒,用排饱和食盐水的方法先后收集20mLCH4和80mLCl2,放在光亮的地方(注意:不要放在阳光直射的地方,以免引起爆炸),等待片刻,观察发生的现象。
现象与解释:大约3min后,可观察到量筒壁上出现油状液滴,量筒内饱和食盐水液面上升。说明量筒内的混合气体在光照下发生了化学反应;量筒上出现油状液滴,说明生成了新的油状物质;量筒内液面上升,说明随着反应的进行,量筒内的气压在减小,即气体总体积在减小。
2.乙烯
(1)乙烯的燃烧
实验:点燃纯净的乙烯。观察乙烯燃烧时的现象。
现象与解释:乙烯在空气中燃烧,火焰明亮,并伴有黑烟。乙烯中碳的质量分数较高,燃烧时有黑烟产生。
(2)乙烯使KMnO4酸性溶液褪色
实验:把乙烯通入盛有KMnO4酸性溶液的试管里,观察试管里溶液颜色的变化。
现象与解释:KMnO4酸性溶液的紫色褪去,说明乙烯能被氧化剂KMnO4氧化,它的化学性质比烷烃活泼。
(3)乙烯使溴的四氯化碳溶液褪色
实验:把乙烯通入盛有溴的四氯化碳溶液的试管里,观察试管里溶液颜色的变化。
现象与解释:溴的红棕色褪去,说明乙烯与溴发生了反应。
3.乙炔
(1)点燃纯净的乙炔
实验:点燃纯净的乙炔。观察乙炔燃烧时的现象。
现象与解释:乙炔燃烧时,火焰明亮,并伴有浓烈的黑烟。这是乙炔中碳的质量分数比乙烯还高,碳没有完全燃烧的缘故。
(2)乙炔使KMnO4酸性溶液褪色
实验:把纯净的乙炔通入盛有KMnO4酸性溶液的试管里,观察试管里溶液颜色的变化。
现象与解释:KMnO4酸性溶液的紫色褪去,说明乙炔能与KMnO4酸性溶液反应。
(3)乙炔使溴的四氯化碳溶液褪色
实验:把纯净的乙炔通入盛有盛有溴的`四氯化碳溶液的试管里,观察试管里溶液颜色的变化。
现象与解释:溴的红棕色褪去,说明乙炔也能与溴发生加成反应。
4.苯和苯的同系物
实验:苯、甲苯、二甲苯各2mL分别注入3支试管,各加入3滴KMnO4酸性溶液,用力振荡,观察溶液的颜色变化。
现象与解释:苯不能使KMnO4酸性溶液褪去,说明苯分子中不存在碳碳双键或碳碳三键。甲苯、二甲苯能使KMnO4酸性溶液褪去,苯说明甲苯、二甲苯能被KMnO4氧化。
5.卤代烃
(1)溴乙烷的水解反应
实验:取一支试管,滴入10滴~15滴溴乙烷,再加入1mL5%的NaOH溶液,充分振荡、静置,待液体分层后,用滴管小心吸入10滴上层水溶液,移入另一盛有10mL稀硝酸溶液的试管中,然后加入2滴~3滴2%的AgNO3溶液,观察反应现象。
现象与解释:看到反应中有浅黄色沉淀生成,这种沉淀是AgBr,说明溴乙烷水解生成了Br—。
(2)1,2-二氯乙烷的消去反应
实验:在试管里加入2mL1,2-二氯乙烷和5mL10%NaOH的乙醇溶液。再向试管中加入几块碎瓷片。在另一支试管中加入少量溴水。用水浴加热试管里的混合物(注意不要使水沸腾),持续加热一段时间后,把生成的气体通入溴水中,观察有什么现象发生。
现象与解释:生成的气体能使溴水褪色,说明反应生成了不饱和的有机物。
6.乙醇
(1)乙醇与金属钠的反应
实验:在大试管里注入2mL左右无水乙醇,再放入2小块新切开的滤纸擦干的金属钠,迅速用一配有导管的单孔塞塞住试管口,用一小试管倒扣在导管上,收集反应中放出的气体并验纯。
现象与解释:乙醇与金属钠反应的速率比水与金属钠反应的速率慢,说明乙醇比水更难电离出H+。
(2)乙醇的消去反应
实验:在烧瓶中注入20mL酒精与浓硫酸(体积比约为1:3)的混合液,放入几片碎瓷片。加热混合液,使液体的温度迅速升高到170℃。
现象与解释:生成的气体能使溴的四氯化碳溶液褪色,也能使高锰酸钾酸性溶液褪色。
7.苯酚
- 迷你句子网重磅推荐:
- 实验总结 | 活动实验总结 | 实验总结心得 | 总结思想 | 霍尔效应实验思想总结 | 霍尔效应实验思想总结
(1)苯酚与NaOH反应
实验:向一个盛有少量苯酚晶体的试管中加入2mL蒸馏水,振荡试管,有什么现象发生?再逐滴滴入5%的NaOH溶液并振荡试管,观察试管中溶液的变化。
现象与解释:苯酚与水混合,液体呈混浊,说明常温下苯酚的溶解度不大。当加入NaOH溶液后,试管中的液体由混浊变为澄清,这是由于苯酚与NaOH发生了反应生成了易溶于水的苯酚钠。
(2)苯酚钠溶液与CO2的作用
实验:向苯酚与NaOH反应所得的澄清中通入CO2气体,观察溶液的变化。
现象与解释:可以看到,二氧化碳使澄清溶液又变混浊。这是由于苯酚的酸性比碳酸弱,易溶于水的苯酚钠在碳酸的作用下,重新又生成了苯酚。
(3)苯酚与Br2的反应
实验:向盛有少量苯酚稀溶液的试管里滴入过量的浓溴水,观察现象。
现象与解释:可以看到,立即有白色沉淀产生。苯酚与溴在苯环上的取代反应,既不需加热,也不需用催化剂,比溴与苯及其同系物苯环上的取代反应容易得多。这说明受羟基的影响,苯酚中苯环上的H变得更活泼了。
● 霍尔效应实验思想总结 ●
1、旧人重见像老歌翻唱歌词没变模样意味却已深长
2、记得小时候爱看的是妈妈再爱我一次,还没看之前,看过了一次的发小告诉我说他被感动哭了,一部电视剧他哭了几次。
3、人说劲草才能在疾风后留存,我却不太相信。因为只有柔弱的草,懂得随风变化,才不会被摧折。
4、就像绣花,一个眼错,全盘皆毁;一枚针斜,扎到的就是自己。
5、年轻的时候会想要谈很多次恋爱,但是随着年龄的增长,终于领悟到爱一个人,就算用一辈子的时间,还是会嫌不够。——《初恋50次》
6、因为你,我想要变成一个更好的人,不想成为你的负担,因此发奋,只是想证明我足以与你相配。——《侧耳倾听》
7、世人皆谓我风华绝代,而我只想做你的独一无二罢了。
8、我一见到你,我就变得不像我自己。
9、厌烦而迟钝,不因惶恐而出现盲点。跃动的快乐——不仅是满足或惬意突然到来,就像四月的春雨或是花蕾的绽放。
10、后来我以此为资本,问没看过的敢不敢看,敢不敢流着眼泪看!
11、你留下,或者我跟你走。——《海角七号》
12、岭外音书断,经冬复历春。近乡情更怯,不敢问来人。
13、风起,逐寒,弓矢飞。桂落,霜序,语声落。
14、别让别人告诉你你不能做什么,你有梦想,你就得保护它。人们自己做不成什么事情,就想要告诉你你也做不成。如果你想要什么,就要去争取。
15、曾经有一瞬间我希望时间永远停止,只为了,无论如何都不想听到的一句话。——《来自星星的你》
16、恋,喜欢一人,梦寐求之,辗转反侧,万事皆空。两情相悦,何需羡仙。——《编舟记》
17、只有一个爱字不够表达出我的感受,我爱你,我很爱你,我永远爱你。——《安妮·霍尔》
18、浮生浪迹笑明月,千愁散尽一剑轻。
19、那天带我去看,从开始见到妈妈,我都哭了,整个剧我哭了几次,连最后都是擦着眼泪出来的!
20、多蒙,你现在是真正的红心之王了!
21、只要你不阻碍我的前路,我一定会走得很远很好。
22、郎心自有一双脚,隔江隔海会归来。——《一代宗师》
23、人生如朝露,难得酒逢知已。
24、皇上与大行皇后有过两个嫡子,虽然素日有些隔阂,但情分到底不同些。如今人不在了,自然更念着她的好处了。
25、如果有一天我忍不住问你,你最喜欢的人是谁,请你一定要骗我,无论你心里有多么的不情愿,也请你一定要说,你最喜欢的人是我。——《东邪西毒》
26、朕倒是不怕他们有二心,他们也不敢!只是别总以为自己有着可以倚仗的东西,便自居为老臣,朕喜欢听话的臣子,那些喜欢指手画脚的,便可以退下去歇歇了。
● 霍尔效应实验思想总结 ●
3、现象:
(1) 光电效应在极短的时间内完成;
(2)入射光的频率大于金属的极限频率才会发生光电效应现象;
(3)在已经发生光电效应的条件下,逸出光电子的`数量跟入射光的强度成正比;
(4)在已经发生光电效应的条件下,光电子最大初动能随入射光频率的增大而增大。
在空间传播的光不是连续的,而是一份份的,每一份叫做光量子,简称光子。
先由学生阅读课本上的解释过程,然后教师提出问题,由学生解释。
例题:用波长200nm的紫外线照射钨的表面,释放出的光电子中最大的动能是2.94eV. 用波长为160nm的紫外线照射钨的表面,释放出来的光电子的最大动能是多少?
● 霍尔效应实验思想总结 ●
1.在掌握液晶光开关的基本工作原理的基础上,测量液晶光开关的电光特性曲线,并由电光特性曲线得到液晶的阈值电压和关断电压。
2.测量驱动电压周期变化时,液晶光开关的时间响应曲线,并由时间响应曲线得到液晶的上升时间和下降时间。
3.测量由液晶光开关矩阵所构成的液晶显示器的视角特性以及在不同视角下的对比度,了解液晶光开关的工作条件。
4.了解液晶光开关构成图像矩阵的方法,学习和掌握这种矩阵所组成的液晶显示器构成文字和图形的显示模式,从而了解一般液晶显示器件的工作原理。
液晶的种类很多,仅以常用的TN(扭曲向列)型液晶为例,说明其工作原理。 TN型光开关的结构:在两块玻璃板之间夹有正性向列相液晶,液晶分子的形状如同火柴一样,为棍状。棍的长度在十几埃(1埃=10-10米),直径为4~6埃,液晶层厚度一般为5-8微米。玻璃板的内表面涂有透明电极,电极的表面预先作了定向处理(可用软绒布朝一个方向摩擦,也可在电极表面涂取向剂),这样,液晶分子在透明电极表面就会躺倒在摩擦所形成的微沟槽里;电极表面的液晶分子按一定方向排列,且上下电极上的定向方向相互垂直。上下电极之间的那些液晶分子因范德瓦尔斯力的作用,趋向于平行排列。然而由于上下电极上液晶的定向方向相互垂直,所以从俯视方向看,液晶分子的排列从上电极的沿-45度方向排列逐步地、均匀地扭曲到下电极的沿+45度方向排列,整个扭曲了90度。 理论和实验都证明,上述均匀扭曲排列起来的结构具有光波导的性质,即偏振光从上电极表面透过扭曲排列起来的液晶传播到下电极表面时,偏振方向会旋转90度。 取两张偏振片贴在玻璃的两面,P1的透光轴与上电极的定向方向相同,P2的透光轴与下电极的定向方向相同,于是P1和P2的透光轴相互正交。
在未加驱动电压的情况下,来自光源的自然光经过偏振片P1后只剩下平行于透光轴的线偏振光,该线偏振光到达输出面时,其偏振面旋转了90°。这时光的偏振面与P2的透光轴平行,因而有光通过。
在施加足够电压情况下(一般为1~2伏),在静电场的作用下,除了基片附近的液晶分子被基片“锚定”以外,其他液晶分子趋于平行于电场方向排列。于是原来的扭曲结构被破坏,成了均匀结构。从P1透射出来的偏振光的偏振方向在液晶中传播时不再旋转,保持原来的偏振方向到达下电极。这时光的偏振方向与P2正交,因而光被关断。
由于上述光开关在没有电场的情况下让光透过,加上电场的时候光被关断,因此叫做常通型光开关,又叫做常白模式。若P1和P2的透光轴相互平行,则构成常黑模式。
液晶可分为热致液晶与溶致液晶。热致液晶在一定的温度范围内呈现液晶的光学各向异性,溶致液晶是溶质溶于溶剂中形成的液晶。目前用于显示器件的都是热致液晶,它的特性随温度的改变而有一定变化。
对于常白模式的液晶,其透射率随外加电压的升高而逐渐降低,在一定电压下达到最低点,此后略有变化。可以根据此电光特性曲线图得出液晶的阈值电压和关断电压。
加上(或去掉)驱动电压能使液晶的开关状态发生改变,是因为液晶的分子排序发生了改变,这种重新排序需要一定时间,反映在时间响应曲线上,用上升时间τr和下降时间τd描述。给液晶开关加上一个周期性变化的电压,就可以得到液晶的时间响应曲线,上升时间和下降时间。
上升时间:透过率由10%升到90%所需时间;下降时间:透过率由90%降到10%所需时间。液晶的响应时间越短,显示动态图像的效果越好,这是液晶显示器的重要指标。早期的液晶显示器在这方面逊色于其它显示器,现在通过结构方面的技术改进,已达到很好的效果。
液晶光开关的视角特性表示对比度与视角的关系。对比度定义为光开关打开和关断时透射光强度之比,对比度大于5时,可以获得满意的图像,对比度小于2,图像就模糊不清了。
除了液晶显示器以外,其他显示器靠自身发光来实现信息显示功能。这些显示器主要有以下一些:阴极射线管显示(CRT),等离子体显示(PDP),电致发光显示(ELD),发光二极管(LED)显示,有机发光二极管(OLED)显示,真空荧光管显示(VFD),场发射显示(FED)。这些显示器因为要发光,所以要消耗大量的能量。
液晶显示器通过对外界光线的开关控制来完成信息显示任务,为非主动发光型显示,其最大的优点在于能耗极低。正因为如此,液晶显示器在便携式装置的显示方面,例如电子表、万用表、手机、传呼机等具有不可代替地位。下面我们来看看如何利用液晶光开关来实现图形和图像显示任务。
● 霍尔效应实验思想总结 ●
2、测量霍尔元件的 、曲线,了解霍尔电压 与霍尔元件工作电流 、直螺线管的励磁电流 间的关系;
3、学习用霍尔元件测量磁感应强度的原理和方法,测量长直螺旋管轴向磁感应强度 及分布;
4、学习用对称交换测量法(异号法)消除负效应产生的系统误差。
霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力 作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直于电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。对于图1所示。
半导体样品,若在x方向通以电流 ,在z方向加磁场 ,则在y方向即样品A、A′电极两侧就开始聚积异号电荷而产生相应的电场 ,电场的指向取决于样品的导电类型。显然,当载流子所受的横向电场力 时电荷不断聚积,电场不断加强,直到 样品两侧电荷的积累就达到平衡,即样品A、A′间形成了稳定的电势差(霍尔电压) 。
设 为霍尔电场, 是载流子在电流方向上的平均漂移速度;样品的宽度为 ,厚度为 ,载流子浓度为 ,则有:
其中 称为霍尔系数,是反映材料霍尔效应强弱的重要参数。只要测出 、以及知道 和 ,可按下式计算 :
为霍尔元件灵敏度。根据RH可进一步确定以下参数。
(1)由 的符号(霍尔电压的正负)判断样品的导电类型。判别的方法是按图1所示的 和 的方向(即测量中的+ ,+ ),若测得的 <0(即A′的电位低于A的电位),则样品属N型,反之为P型。
(2)由 求载流子浓度 ,即 。应该指出,这个关系式是假定所有载流子都具有相同的漂移速度得到的。严格一点,考虑载流子的速度统计分布,需引入 的修正因子(可参阅黄昆、谢希德著《半导体物理学》)。
(3)结合电导率的测量,求载流子的迁移率 。电导率 与载流子浓度 以及迁移率 之间有如下关系:
上述推导是从理想情况出发的,实际情况要复杂得多。产生上述霍尔效应的同时还伴随产生四种副效应,使 的测量产生系统误差,如图2所示。
(1)厄廷好森效应引起的电势差 。由于电子实际上并非以同一速度v沿y轴负向运动,速度大的电子回转半径大,能较快地到达接点3的侧面,从而导致3侧面较4侧面集中较多能量高的电子,结果3、4侧面出现温差,产生温差电动势 。可以证明 。 的正负与 和 的方向有关。
(2)能斯特效应引起的电势差 。焊点1、2间接触电阻可能不同,通电发热程度不同,故1、2两点间温度可能不同,于是引起热扩散电流。与霍尔效应类似,该热扩散电流也会在3、4点间形成电势差 。若只考虑接触电阻的差异,则 的方向仅与磁场 的方向有关。
(3)里纪-勒杜克效应产生的电势差 。上述热扩散电流的载流子由于速度不同,根据厄廷好森效应同样的理由,又会在3、4点间形成温差电动势 。 的正负仅与 的方向有关,而与 的方向无关。
(4)不等电势效应引起的电势差 。由于制造上的困难及材料的不均匀性,3、4两点实际上不可能在同一等势面上,只要有电流沿x方向流过,即使没有磁场 ,3、4两点间也会出现电势差 。 的正负只与电流 的方向有关,而与 的方向无关。
综上所述,在确定的磁场 和电流 下,实际测出的电压是霍尔效应电压与副效应产生的附加电压的代数和。可以通过对称测量方法,即改变 和磁场 的方向加以消除和减小副效应的影响。在规定了电流 和磁场 正、反方向后,可以测量出由下列四组不同方向的 和 组合的电压。即:
然后求 , , , 的代数平均值得:
通过上述测量方法,虽然不能消除所有的副效应,但 较小,引入的误差不大,可以忽略不计,因此霍尔效应电压 可近似为
1、以上分析可知,将通电的霍尔元件放置在磁场中,已知霍尔元件灵敏度 ,测量出 和 ,就可以计算出所处磁场的磁感应强度 。
2、直螺旋管离中点 处的轴向磁感应强度理论公式:
式中, 是磁介质的磁导率, 为螺旋管的匝数, 为通过螺旋管的电流, 为螺旋管的长度, 是螺旋管的内径, 为离螺旋管中点的距离。
1、将测试仪的“ 调节”和“ 调节”旋钮均置零位(即逆时针旋到底),极性开关选择置“0”。
2、接通电源,电流表显示“0.000”。有时, 调节电位器或 调节电位器起点不为零,将出现电流表指示末位数不为零,亦属正常。电压表显示“0.0000”。
3、测定 关系。取 =900mA,保持不变;霍尔元件置于螺旋管中点(二维移动尺水平方向14.00cm处与读数零点对齐)。顺时针转动“ 调节”旋钮, 依次取值为1.00,2.00,…,10.00mA,将 和 极性开关选择置“+” 和“-”改变 与 的极性,记录相应的电压表读数 值,填入数据记录表1。
4、以 为横坐标, 为纵坐标作 图,并对 曲线作定性讨论。
5、测定 关系。取 =10 mA ,保持不变;霍尔元件置于螺旋管中点(二维移动尺水平方向14.00cm处与读数零点对齐)。顺时针转动“ 调节”旋钮, 依次取值为0,100,200,…,900 mA,将 和 极性开关择置“+” 和“-”改变 与 的极性,记录相应的电压表读数 值,填入数据记录表2。
6、以 为横坐标, 为纵坐标作 图,并对 曲线作定性讨论。
1、取 =10 mA, =900mA。
2、移动水平调节螺钉,使霍尔元件在直螺线管中的位置 (水平移动游标尺上读出),先从14.00cm开始,最后到0cm点。改变 和 极性,记录相应的电压表读数 值,填入数据记录表3,计算出直螺旋管轴向对应位置的磁感应强度 。
3、以 为横坐标, 为纵坐标作 图,并对 曲线作定性讨论。
4、用公式(1-8)计算长直螺旋管中心的磁感应强度的理论值,并与长直螺旋管中心磁感应强度的测量值 比较,用百分误差的形式表示测量结果。式中 ,其余参数详见仪器铭牌所示。
六、注意事项:
1、为了消除副效应的影响,实验中采用对称测量法,即改变 和 的方向。
2、霍尔元件的工作电流引线与霍尔电压引线不能搞错;霍尔元件的工作电流和螺线管的励磁电流要分清,否则会烧坏霍尔元件。
3、实验间隙要断开螺线管的励磁电流 与霍尔元件的工作电流 ,即 和 的极性开关置0位。
4、霍耳元件及二维移动尺容易折断、变形,要注意保护,应注意避免挤压、碰撞等,不要用手触摸霍尔元件。
七、数据记录:KH=23.09,N=3150匝,L=280mm,r=13mm
10.00 2.99 -3.00 3.17 -3.19 3.09
10.0 2.92 -2.96 3.13 -3.13 13.10
12.0 2.94 -2.99 3.15 -3.06 13.20
九、实验结果:
实验表明:霍尔电压 与霍尔元件工作电流 、直螺线管的励磁电流 间成线性的关系。
长直螺旋管轴向磁感应强度:
● 霍尔效应实验思想总结 ●
在即将结束的这个学期里,我完成了大学物理实验(上)这门课程的学习。物理实验是物理学习的基础,虽然在很多物理实验中我们只是复现课堂上所学理论知识的原理与结果,但这一过程与物理家进行研究分子和物质变化的科学研究中的物理实验是一致的。在物理实验中,影响物理实验现象的因素很多,产生的物理实验现象也错综复杂。老师们通过精心设计实验方案,严格控制实验条件等多种途径,以最佳的实验方式呈现物理问题,使我们通过努力能够顺利地解决物理实验呈现的问题,考验了我们的实际动手能力和分析解决问题的综合能力,加深了我们对有关物理知识的理解。通过一学期的课程,我学到了很多东西。
● 霍尔效应实验思想总结 ●
1.在掌握液晶光开关的基本工作原理的基础上,测量液晶光开关的电光特性曲线,并由电光特性曲线得到液晶的阈值电压和关断电压。
2.测量驱动电压周期变化时,液晶光开关的时间响应曲线,并由时间响应曲线得到液晶的上升时间和下降时间。
3.测量由液晶光开关矩阵所构成的液晶显示器的视角特性以及在不同视角下的对比度,了解液晶光开关的工作条件。
4.了解液晶光开关构成图像矩阵的方法,学习和掌握这种矩阵所组成的液晶显示器构成文字和图形的显示模式,从而了解一般液晶显示器件的工作原理。
● 霍尔效应实验思想总结 ●
将物体放入水中,测量水面上升的幅度,或者放入满满的量筒中,测量溢出的水的体积,可以间接得到物体浸入水中的部分的体积
然后将物体沿水平面切割,取下,用天平测量水下部分的质量。
计算得出全部体积。
取一量杯,水面与杯面平齐,想办法将物体全部浸入水中(如用细针将其按入水中),称量溢出水的体积即可。
如果容器是个圆柱形,把里面放满水,然后把物体放入水中,在把物体取出.容器中空的部分就是这个物体的体积.
如果物体不下沉,就把物体上系一个铁块放入水中,测出铁块和物体的体积,然后再测出铁块的`体积,接着用它们的总体积减去铁块的体积就得出物体的体积.
● 霍尔效应实验思想总结 ●
代肖***法律事务
在老师没有给我们看电影之前,我没有接触过宫崎骏的作品。但是第一次看他的这部《霍尔的移动城堡》便被深深的感动了,苏菲的善良,霍尔的帅气,特别是他们唯美的爱情,真的很让人羡慕。记得有一个场景最让我感动:
当苏菲让哈尔逃开战斗时,哈尔说:“我已经逃得太久了,好不容易找到要保护的人,那就是你……”然后决然而去。哈尔不再胆怯,因为为了保护心爱的人,他变得勇敢起来!
但在现实中,很多人没有勇气表达自己的爱,最终错过了最爱的人
在这部电影里,我最喜欢的就是霍尔。那么霍尔究竟是什么的人呢?我认为他是一个为世所不容的理想主义者。
霍尔第一次露面是在一条安静的街道上。索菲遇到两个在街上骚扰她的士兵。霍尔突然出现了。他用一个小指头把她放了下来。荒野女巫的手下追赶他们,霍尔拉着苏菲腾空而起,两个人踩着舞曲的节拍凌空缓步前行,把世间繁华景象踩在脚底。苏菲像做梦一样随霍尔降落阳台,霍尔手一挥,飞坠而下,消失不见了。
这是一个梦幻般的出场式。霍尔金发碧眼,眉目柔美,眼神迷离,文质彬彬,他英雄救美,温柔善意,来去如风,神秘浪漫,满足了少女对于白马王子的一切幻想。
霍尔第二次出场,是在苏菲变成老太婆以后。当时苏菲正在炉火上做饭,霍尔进门,看见家里来了生人,问:“请问,你是谁?
”苏菲笑说:“我是苏菲婆婆,就是城堡新请来的清洁妇。”霍尔也没有多问,抢下苏菲手里的菜铲,“请你拿两片培根和六个鸡蛋过来。
”苏菲把鸡蛋和培根递给霍尔,霍尔沉静地做饭,把鸡蛋一一打到平底锅里,再把蛋壳扔进火炉。油锅发出咝咝声,火焰欢快地升起,霍尔做了一顿丰盛的早餐。后来,他们坐下来和小徒弟马鲁克一起吃饭,就像一家人一样。
令我惊讶的是,霍尔第二次露面是做家务。他能像大多数单身汉一样做饭!作为一个魔术师,霍尔走出大厅,走进厨房。他无疑是个好人。
霍尔还有一个优点,他说话很有礼貌。他说话经常用“请”“麻烦你”等礼貌用语,举止温文有礼?。在王宫,面对强敌沙里曼夫人,霍尔明知接下来将有一场恶仗,他仍然弯腰向沙里曼夫人行礼,说:
“老师的精神不错,令人高兴。我依约前来了。”风度从容不迫。
只有一次例外。一天,索菲不小心移动了浴室的架子,扰乱了魔法。霍尔的头发再也不回变回美丽的金色了。他围着一条浴巾,跌跌撞撞冲下楼,向苏菲发脾气:
“苏菲!你是不是动了浴室的架子了!看,头发变成这种古怪的颜色了!
”他绝望地大哭,颓然倒在椅子上,“没救了,真是奇耻大辱……假如不美,活着还有什么意思……”他死一般倒在灶台上,身上汩汩冒出绿黏液,屋子里阴气森森,黑暗精灵纷纷舞动,房梁扭曲颤动,绿黏液流了一地。苏菲不得不把霍尔抱上楼。这场戏略带喜剧性,揭示了霍尔孩子气的一面。
霍尔日常懒惰消沉,不讲卫生。索菲刚进城堡时,她看到城堡凌乱不堪,横梁上布满灰尘,到处都是蜘蛛和爬行动物。我们知道城堡是霍尔的心灵幻觉。城堡里的乱七八糟表明霍尔意志消沉。
但是,霍尔虽然意志消沉,仍然坚持每天去战场拼杀,他是一个坚定的反战人士,一心要阻止战火破坏城镇。
影片开头,在苏菲的帽子店里,姑娘们纷纷议论霍尔:“听说南町的那个叫玛莎的女孩,心脏被霍尔拿走了,好可怕!”传说中霍尔是个恶魔,人人谈虎色变,这就好像金庸笔下的一些侠客,比如萧峰,金蛇郎君,黄药师,虽然都是顶天立地的人物,却被“名门正派”视为大魔头。
在世人看来,特立独行的人都是古怪的,而特立独行又极有本事的人,几乎便是灾星无疑了。连王宫御用魔法师沙里曼夫人也认为霍尔非常危险。但作为一个日夜与霍尔相处的人,索菲深信霍尔不是坏人,但为什么大家都说霍尔是那么可怕??
影片末尾,悬念终于揭开。城堡溃散了,苏菲跌落谷底。绝望中,她发现霍尔送的戒指在动。戒指的光指向城堡的大门。她打开城堡的大门,穿过一条长长的隧道,走进一个房间。
房间里有一张桌子,上面有一张写满字的纸,这是霍尔的笔迹。她走出房间,在外面找到霍尔的秘密花园。流星掠过,击中草地,掉进水里,发出丁丁当当的声音。一个瘦弱的小男孩远远走来,那就是童年时代的霍尔。
苏菲惊呆了。小男孩站在草地中间。一颗流星从天而降,落入他的手中,射出耀眼的火花。小男孩微笑地捧住流星念念有词,似乎是在许愿,接着,他仰头把流星吞了下去。
索菲远远地看到了,简直不敢相信——那就是所谓的合同,所谓的交易。那其实不过是孩子的一个许愿而已!男孩皱着眉头,弯下腰,抱着胸膛,然后伸出一颗燃烧的心。
火在燃烧,男孩静静地站在草坪中间,手里拿着燃烧的心。这是全片最经典的一幕。一瞬间,苏菲明白了一切。
小男孩霍尔把自己的心握在手中,但他不仅是为了拯救世界,也是为了拯救自己。他不想忠于王国,不想在战争中迫害人民,他想争取一个自由和平的环境。于是,他把自己的心托付给了流星,使流星变成了火魔,并依靠火魔的力量打造了一座强大的移动城堡。
之后,他整天躲在城堡里,躲避国王的召唤,随时外出阻止战争的蔓延。其实,霍尔的愿望只是一个普通孩子的愿望,但正是这个简单的愿望,在习惯了奴隶制和专制的成人世界里是非常危险的。当霍尔将自己幼小的心挖出来,远观的苏菲明白了一切。
地下忽然裂开,强大的时空要吸苏菲回去,苏菲忍不住喊:“霍尔,卡西法,我是苏菲,等着我!我一定会去找你的!
在未来等我——”她知道他将面临长期孤独的处境,她要给他一个爱的约定。霍尔惊异地回过头,看见一个少女沉入地下不见了。就在他把心交给火魔的那一天,他感受到爱的召唤,于是他一直等待着苏菲,等待着他的心上人。
直到有一天,他发现城堡里有个叫苏菲的婆婆,她自称是清洁工。他知道那是他的情人。他做的第一件事就是抓住她的铲子给他做一顿丰盛的早餐。
在满是流星的花园里,霍尔手里拿着一颗燃烧的心,走远了。这一幕如此感人,又如此令人悲伤。苏菲在时间隧道里往回走,边走边哭。
那只是一个孩子单纯的愿望,却成了做人的全部代价。霍尔自此被世人看作眼中钉,于是他放逐自己,驱使城堡穿越无数大山大海,寻找他的爱人。现在,他的爱人终于来了。
苏菲走出隧道,看见霍尔化身为大鸟,静静守在山谷里等她,她上前,拨开他蓬乱的羽毛,亲吻他血迹斑斑的脸庞,说:“霍尔,对不起,你在这里等我,而我却一直到现在才来。”
这是最感人肺腑的表白。她才知道他一直在等她。他受了那么多苦,独自奋斗了那么久,但她从来没有为他分担过。她感到歉疚。
然后索菲解除了霍尔与卡西法的合同,把心脏放回霍尔的心脏。霍尔收回心脏,卡西法也活了下来。他们重新制造了一个美丽的花园城堡。
支配这所花园城堡的,不再是霍尔那团孤愤叛逆的心火,而是霍尔与苏菲的爱情。这个大团圆的结局虽嫌老套,倒也说得通。仔细想来,也许只有爱情才能拯救为世所不容的理想主义者,也许只有爱情才会让沉浸于英雄梦想的男人回家。
这就是霍尔的故事。我喜欢这故事。每个理想主义者心中,都有一个霍尔。一些人已经找到爱,一些人尚没有,也许终生得不到,而我一直向往着得到这样的爱情。
- 更多精彩霍尔效应实验思想总结内容,请访问我们为您准备的专题:霍尔效应实验思想总结